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LONG-TERM GOALS  
 
To determine whether lateral mixing at O(1-10 km) scales is due to a balanced or unbalanced 
downscale cascade from the mesoscale, or due to local vertical mixing by internal waves and surface 
forcing. 
 
OBJECTIVES    
 
Our work is testing hypothesis 3 of the white paper “Scalable Lateral Mixing and Coherent 
Turbulence”: Non-quasigeostrophic, submesoscale instabilities feed a forward cascade of energy, 
scalar and Ertel PV variance, which enhances both isopycnal and diapycnal mixing. Related 
hypotheses are that submesoscale variability is associated with coherent structures and anisotropic 
mixing. Further, submesoscale processes are inherently vertical, as well as horizontal, and 
submesoscale processes facilitate cross-front exchange.  
 
APPROACH    
 
Our approach is to run a number of process studies using a three-dimensional non-hydrostatic Process 
Study Ocean Model (PSOM, Mahadevan, 2006; Mahadevan and Tandon, 2006). The typical model 
resolution for resolving submesoscales is about 1 km in the horizontal. We have examined processes in 
domains approximately 100 km x 200 km and 100 km x 500 km. 
 
WORK COMPLETED  
 
This work benefited from collaborations with Takeyoshi Nagai (TUMSAT, Japan), Eric Kunze, Eric 
D’Asaro and Craig Lee (all at U.Washington and participants of the LATMIX DRI), and the 
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participation of Ph.D. student Sonaljit Mukherjee (UMassD) and postdoctoral associate, Sanjiv 
Ramachandran (UMassD). 
 
A modeling study of restratification by mixed layer eddies was undertaken using parameters from the 
subpolar North Atlantic to understand the role of surface buoyancy fluxes (cooling) in inhibiting 
restratification. A scaling estimate was derived for the negative buoyancy flux (cooling rate) that 
prevents restratifiction by mixed layer eddies, much like the effect of downfront winds described in 
Mahadevan, Tandon and Ferrari (2010). The relationship was tested against observations from the 
North Atlantic during the initiation of the spring phytoplankton bloom (Mahadevan et al., 2012).  
 
Two approaches were implemented and tested (by S. Ramachandran and S. Mukherjee, UMassD) for 
inclusion of appropriate subgrid lateral diffusivities in our model runs of submesoscale  frontal 
dynamics: (i) A Smagorinsky closure scheme for anisotropic grids that models the horizontal subgrid 
diffusion (Fig. 1), and (ii) constant lateral diffusivity of momentum and tracers with varying vertical 
diffusivity modeled by a k-ε closure scheme (Fig. 2).  
 
A modeling study was undertaken to explain observations of banded ageostrophic shear and enhanced 
dissipation in the Kuroshio front. The Process Study Ocean Model (PSOM) was initialized with 
observed cross frontal sections. The model was used to quantify the flux of energy from the 
geostrophically balanced flow into the the internal wave field (Fig. 3) and diagnose the mechanism of 
internal wave radiation.  
 
Observational data from the 2011 LatMix field experiment is being used to initialize model runs to 
study the generation of variance in tracer (spice) along isopycal surfaces. 
 
RESULTS    
 
The application of the surface-forced model runs to the formation of the North Atlantic bloom resulted 
in a manuscript published in Science (Mahadevan et al., 2012). The study used observations (from an 
NSF-funded study) and modeling (described here) to show that mixed layer eddies arising from the 
baroclinic instability of lateral density gradients in the mixed layer can generate stratification prior to 
the onset of solar warming in the Spring. 
 
A Smagorinsky-type closure for horizontal mixing realizes the theoretically expected rates of  energy 
converstion from potential to kinetic energy. Horizontal diffusivities of magnitude ~ 5 m2/s or larger 
(used on a 1 km x 1 km grid) tend to be overly dissipative (Fig 1).  
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Figure 1: The comparison of APE extraction for the Anisotropc Smagorinsky Scheme (ASM) vs. 
those with constant coeffients. KX1KZ1 corresponds to horizontal diffucivity of 1m2/s and vertical 

diffucivity of 10-5m2/s. Vertical profiles of m, the ratio of isopycnal slope to ratio of zonally averaged 
vertical to horizontal buoyancy gradients is shown at three different times in the simulation. For the 

most efficient APE extraction, this ratio should be 2 (Eady 1949). For the ASM, the ratio is 2 at 
early times. As the eddies begin to spin down, the mixing is mostly along isoycnals and the ratio is 

close to 1. The circles on the black curve indicate the vertical grid levels. The APE extraction is not 
as efficient with constant coefficients as with ASM. 

 
Lower horizontal diffusivity can be used when coupled with an appropriate vertical mixing scheme 
using k-ε models in GOTM as sub-grid closures for PSOM. An example of enhanced dissipation near 
fronts with such a closeure is shown in Figure 2. 
 
Through meandering and the loss of balance, we find that a strong front transfers energy from the 
balanced state (geostrophic flow) to near-inertial internal waves (NIW) in the vicinity of the front 
(Figure 3). In our model simulations, the NIW energy is not transported large distances, but is 
dissipated near the front. This mechanism could make a significant contribution to the sink of energy 
from the large-scale flow and is important in that it can occur in the ocean interior. 



4 
 

 
 
Figure 2: Dissipation as modeled by coupled PSOM-k-ε GOTM model for a frontal simulation. The 
k-ε n model is inspired by Venayagamoorthy and Stretch (2010). While enhanced dissipation values 
are seen near the submesoscale eddy structures, the dissipation decreases to background values in 

the restratified region. 
 

 
Figure 3: Top Row: Plan views of the relative vorticity (normalized by f) at three different times 

during the development of a frontal meander. Lower row: Plan views of near-inertial internal wave 
(NIW) energy divergence. Red indicates a source (transfer of energy from the balanced flow to the 

NIW field). Blue indicates a loss of energy from NIW to dissipation. Most of the NIW energy is 
generated and dissipated in the vicinity of the front and is linked to the meander evolution. 
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